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Abstract

Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively
little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential
paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian
analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and
contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian
approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing
the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood
and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We
then empirically compare the frequentist properties of regression calibration and the Bayesian approach through
simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is
then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.
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I Introduction

Many epidemiological studies are affected by measurement error in one or more of the covariates of interest. It is
well known that error in covariates results in biased estimates of true covariate(s)-outcome associations and in a
loss of power to detect such associations.' In this paper, we focus on correcting for the effects of measurement
error in continuous covariates in three models which are commonly used in epidemiological analysis; linear
regression models for continuous outcomes, logistic regression models for binary outcomes, and Cox
proportional hazards models for survival or time to event outcomes.

Throughout most of the paper, we will focus on the situation in which there is one main exposure of interest,
which is subject to measurement error, and one or more other covariates to be adjusted for, which are assumed to
be measured without error. The variable which is measured with error could equally be one of the confounders,
and indeed the approaches we describe also extend to the more general case of multiple covariates measured with
error. While exposure measurement error is commonly prioritized, measurement error in confounders is also a
serious and highly prevalent issue, and causes estimates of exposure effects to only be partially adjusted for the
poorly measured confounder. Error in continuous variables can take a number of forms. The most simple and
most commonly assumed form is the classical measurement error model, under which the measured exposure is
equal to the true exposure plus an independent random error term. Under this model, the measured exposure is an
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unbiased measure of the true exposure. The error terms are assumed to have zero mean and, typically, constant
variance.

To make corrections for the effects of covariate measurement error in regression models requires some
information about the relationship between the true exposure and the measured exposure, i.e. regarding the
parameters of a measurement error model. One way of gaining information about the error model is to use a
validation study within the main study sample, in which the true exposure is observed alongside the measured
exposure. It is often not feasible or even possible, however, to obtain a validation sample and a more common
alternative is to obtain one or more replicate observations of the exposure for a subset of individuals within the
main study sample. We refer to this as a replication study. In this paper, we focus on replication studies.

Many methods have been described for correcting for the effects of measurement error in regression models.’
The most widely used correction method is regression calibration (RC), which is popular due to its simplicity and
applicability in different types of regression models. In RC, the true exposure, which is unobserved in the main
study sample, is replaced when fitting the outcome regression model by the expected value of the true exposure,
conditional on the measured exposure and the other error-free covariates for each individual. RC gives consistent
estimates of the true associations between the explanatory variables and the outcome in a linear regression model,
and approximately consistent estimates in non-linear models, including logistic regression models*® and Cox
proportional hazards models.*

RC has some drawbacks, however. First, for non-linear models estimates can have moderately large biases even
when the sample size is large, particularly if the effect size (odds ratio or hazard ratio) is large.” Second, RC does
not automatically accommodate uncertainty in the parameters indexing the measurement process. Measures of
uncertainty require use of approximate methods (the ‘delta method’ approach), bootstrapping methods, which are
computationally intensive, or estimating equation methods, whose validity relies on asymptotic conditions and are
complex to implement in practice. Third, extending the basic RC approach to more complex situations, such as
when the outcome model is assumed to depend on non-linear functions of the true covariate,® or when the
measurement error model is more complex (e.g. heteroscedastic error’), is not trivial.

The Bayesian approach has been often advocated as a natural route to accommodating sources of uncertainty,
including measurement error, misclassification, and missing data. Early papers include those by Richardson and
Gilks,*® who described a Bayesian approach to handling measurement error. By taking a Bayesian approach to
handle covariate measurement error, uncertainty in the parameters indexing the measurement process is
automatically accommodated. Like the method of maximum likelihood (ML), the posterior distributions
involved typically involve intractable likelihoods, but this difficulty is obviated by Markov Chain Monte Carlo
(MCMC) methods, which are now implemented in a number of standard and Bayesian-specific packages.
A further strength is that these software packages allow one to define and fit quite complex user defined
Bayesian models, meaning that there is great flexibility in adapting the modelling assumptions to the situation
at hand. Lastly, and in contrast to methods such as ML or multiple imputation (MI), whose inferences typically
rely on various large sample assumptions (e.g. to handle nuisance parameters or in deriving simple imputation
combination rules), Bayesian methods do not. In the setting of covariate measurement error, estimators which
allow for the error typically have skewed sampling distributions, and this is automatically accommodated in a
Bayesian approach, since the entire posterior distribution is simulated.

Despite excellent book length treatments of covariate measurement error methods,' including one specifically
focusing on Bayesian methods,'® in our view it nevertheless continues to be underused by the epidemiological and
clinical research communities. This may be for a number of reasons, but principal among them may be the
apparent need to move from a frequentist to a Bayesian inferential approach, and the fact that standard
statistical packages have (with exceptions) not enabled such Bayesian models to be fitted. To the first of these
reasons, as has been noted by others (e.g. Little'"), Bayes procedures often have good frequentist properties, and
indeed in small samples can have better frequentist properties than ML methods. As such, one may be able to use a
Bayesian method without necessarily adopting the Bayesian inferential paradigm. To this end, we present
simulation results to examine the frequentist properties of the Bayesian approach to covariate measurement
error, using certain default priors. To the second reason, major steps forward have been made over the last
25 years in terms of accessible MCMUC software, such that software and computational power are usually not a
hinderance to using a Bayesian approach. Moreover, we make all of our code available online to facilitate
increased use of the Bayesian approach.

In Section 2, we begin by describing the assumed setup and notation for the covariate measurement error
problem. Next, in Section 3, we review the RC approach. In Section 4, we describe the Bayesian approach, both in
terms of modelling choices and statistical properties, and its practical implementation. We contrast the Bayesian
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approach with ML and MI in Section 5. In Section 6, we evaluate the frequentist properties of RC and Bayesian
analysis in a series of simulation studies of the most common outcome model types. In Section 7, we present
results of illustrative analyses using data from the Third National Health and Nutrition Examination Survey
(NHANES III). We conclude in Section 8 with a discussion.

2 Setup and notation

In this section, we describe the general setup used for the remainder of the paper.

2.1 Outcome model

We assume data are available for an i.i.d. sample of n individuals. For individual i, we let Y; X; and Z,,
respectively, denote the outcome, true covariate which is subject to measurement error and error-free
covariates. We consider three types of outcome models for Y; (i) linear, (ii) logistic, and (iii) Cox proportional
hazards regression. We assume that the outcome model includes only main effects of X; and Z;. For a linear
regression outcome model, we thus assume that

Yi=Bo+ BxXi+ BLZi + € (1)

where €; ~ N(0,0?) is an independent normally distributed residual error. For a logistic regression outcome model,
we assume that

logit{P(Y; = 11X, Z;)} = Bo + BxX: + BLZi 2

Lastly, in the case of a censored time to event outcome, the outcome Y; = (7}, D;) where T; denotes the observed
event or censoring time and D; denotes the event indicator. We then assume a Cox proportional hazards outcome
model, such that the hazard given X; and Z; is given by

h(t1X:, Z;) = ho(t) exp(BxXi + BLZ:)

where /9(f) denotes the baseline hazard function. In the standard frequentist analysis based on the Cox
proportional hazards model, the baseline hazard is left unspecified, and inferences about the hazard ratio
parameters (By, Bz) are made via a partial likelihood."?

2.2 Measurement error model

We assume that for each study individual, an error-prone measurement W;; is available, rather than the covariate
of interest X;. We assume a classical error model

Wi =X+ Ux

where E(U;1|X;) = 0. We also assume that the errors U; are independent of all other random variables. This
implies that the error is non-differential with respect to the outcome Y;.

To permit estimation of the measurement error variance, we assume the existence of an internal replication sub-
study. This means that for a randomly selected group of individuals a second error-prone measurement
Wi = X; 4+ Up is obtained, where the error Uj is assumed independent of U;. We let W; denote the vector of
error-prone measurements on individual 7, and let N; denote its length, which is two for those individuals in the
replication sub-study and one for those not. In the following, we specify further assumptions as required by RC
and Bayesian methods.

3 Regression calibration

In the simplest version of RC, the outcome model is fitted as usual, with the unobserved X; replaced by an estimate
of E(X;| Wy, Z,‘).13 Typically, the latter conditional expectation is assumed to be linear in W} and Z;, and it can be
estimated by linearly regressing W, on W; and Z; in the individuals from the internal replication sub-study.
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We note that this version of RC does not rely on an assumption that the two errors U; and U, have the same
variance.

If one is willing to make additional assumptions, a somewhat more efficient version of RC can be used, in
which X; is replaced by an estimate of E(X;|W;, Z;), and the parameters involved in the latter are estimated using
all study individuals. A common assumption is to assume that X;|Z;~ N(yo + y,Zi,03,,) and that the
measurement errors U;; and Up are normally distributed with mean zero and common variance a%/. The
parameters can be estimated by ML as a random-intercepts mixed model for the W; conditional on Z,. It
then follows from standard properties of the multivariate normal distribution that X;|W;,Z; is normally
distributed, with

2
Ox1z — T
EOGIW3Z0) = 0 + V32 + L (W = (10 + V3Z))
z U§(|Z + cr%,/Ni z

s (3)
Var(X, Wi, Z) = o3, (1 - T2
e Xz a§,|2+02U/Nf

where W; denotes the mean of individual i’s N; error-prone measurements.

As noted in the introduction, RC gives consistent parameter estimates in the case of a linear outcome model.
For logistic and Cox outcome models, RC is approximately consistent. Armstrong first gave justification for RC in
generalized linear models under the assumption that Var(X;|W,) is ‘small’, using the delta method.? This condition
will be satisfied when the measurement error variance is ‘small’. Rosner et al.® later justified its use in logistic
regression under the assumptions that the outcome is rare and that X;|W, is normal. Subsequently, Kuha'* showed
that RC could be justified as an approximate method for logistic regression provided that g% Var(X;|W;) is small,
without the rare outcome assumption. This condition holds when Sy is small or the measurement error variance is
small. For a Cox proportional hazards outcome model, RC can be justified when the event rate is low or the
measurement error variance is small.*!’

For valid inferences, the estimation of the parameters involved in E(X;|W;, Z;) should be allowed
for. One approach is to use bootstrapping. Alternatively, it is possible to construct sandwich variance
estimators by stacking the estimating equations used in the two stages." One drawback with this approach
is that the resulting Wald type symmetric confidence intervals do not reflect the asymmetric sampling
distribution of the RC estimator, which may lead to confidence interval coverage which deviates from the
nominal level.

4 Bayesian approach

In this section, we describe the key elements of a Bayesian analysis of the covariate measurement error problem.

4.1 Model specification

First, we specify a joint parametric model for (Y;, X;, Wi, Wi |Z;). We condition on the fully observed Z;, thereby
avoiding the need to model its distribution. Assuming that the measurement error is non-differential with respect
to both Y; and Z;, this joint model can be decomposed as

FYilXe, Zi, B ) f (Wil Xi, 07) f(Xil Zi, y) 4)

The first component is the outcome model, which contains regression parameters of primary interest
B = (Bo, Bx, Bz) in the case of linear or logistic regression and B = (By, Bz) in the case of Cox regression, and
possibly additional parameters 7 (e.g. a residual variance in the case of a linear regression outcome model). The
second component is the measurement model, and as described previously the simplest assumption is that the
error-prone measurements W follow a classical error model, with independent normally distributed errors
U; ~ N(0,0%). The final component specifies a model for the unobserved covariate X;, conditional on Z;, with
a default choice being a normal linear regression model. We return later to questions of robustness and to model
extensions to relax such distributional assumptions. In the case of a Cox proportional hazards outcome model,
the outcome Y; has two components (7}, D;), and the additional parameters, 1, denote the baseline hazard
function H(?).
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4.2 Prior specification

In the Bayesian approach, we must specify priors for the model parameters. The first ‘Bayesian’ analyses made use
of flat or constant priors, based on the notion that these represent a priori ignorance regarding the value(s) of the
model parameter(s).'® The key issue with such priors is that while a flat prior expresses ignorance on one scale, a
transformation of the parameter implies a non-flat prior on the transformed parameter. The latter half of the 20th
century witnessed the growth of the subjective Bayesian approach, in which the analyst carefully choose the priors
to represent their beliefs about the model parameters in advance of seeing the data. Arguably the majority of
Bayesian analyses which are now performed by researchers make use of so called non-informative or reference
priors.!” Such priors do not (and cannot) represent total ignorance about the model parameters, but can be viewed
as default priors that one might use when subjective prior information is either not available, or one does not want
to use such information in the analysis. The intention of such priors is usually that they have minimal impact on
inferences.

For the joint model in equation (4), prior independence is typically assumed for the parameters in the three sub-
models. For the outcome model regression coefficients g and the coefficients in y, a common default prior is a very
diffuse normal prior centred at zero. For the variance parameters, the conjugate inverse Gamma distribution has
traditionally been advocated. In the context of adjustment for covariate measurement error, Gustafson has
proposed using a Ga(0.5,0.5) prior for the precision (reciprocal of variance) parameters.'® This prior equates to
the likelihood that would be obtained from one observation, with the best guess for the precision of one.

Bayesian analysis of the Cox model requires specification of a prior for the baseline cumulative hazard process
Hy(?) in addition to priors for the regression coefficients 8 and the other sub-model parameters. The prior
distribution for the baseline cumulative hazard process Hy(7) is assumed to be independent of the other priors,
including that for B. Here, we use a Gamma process prior for Hy(7) as described by Kalbfleisch'® and Sinha et al.,"
denoted Hy(t) ~ GP(cHj, c), where H{(t) is a prior guess at the mean and c is a parameter which represents the
confidence in that guess, with small values of ¢ corresponding to a diffuse prior. We let 7y < o) < -+ <t
denote the ordered observed event times. Under the assumption that the hazard is degenerate at 0 except at the
observed event times 7; where D;=1 it follows from the Gamma process prior for Hy(z) that the increments in the
cumulative baseline hazard from time 7y to time #(;41) (j = 1,...,n" — 1) have independent Gamma distributions;
dHo(t(jy) ~ Gamma(c(H*(¢(j+1)) — H*(t)).c). In the later application of this approach, we use
H*(t(j+1)) — H*(t(; = r(t(j+1) — 1)) Where r is a guess at the event rate per unit time. It can be shown'®'? that
under the Gamma process prior for the cumulative hazard the likelihood for (B8, Hy(¢), ¢) tends to the partial
likelihood in the limit as ¢ tends to 0, and that it tends to the full likelihood with Hy(7) = H* as ¢ tends to infinity.

4.3 Posterior inference and simulation

Given specification of the model and priors, Bayesian inference is then based on the posterior distributions of the
model parameters. For the purposes of point estimation, the posterior mean is commonly used. To form a 95%
credible interval for a particular parameter, we take the 2.5% and 97.5% centiles of the posterior distribution. An
advantage of this in the present context of adjustment for covariate measurement error is that asymmetry in the
posterior distribution, which typically occurs when adjusting for covariate measurement error, is automatically
accounted for in credible intervals.

Except for very specific choices of model and prior, in general the posteriors are not available analytically.
Instead, we can utilize MCMC methods to simulate draws from the posteriors distributions (see e.g. part III of
Gelman et al.*%). The most common approach is the method of Gibbs sampling, in which taking each parameter in
turn, a new value is drawn from its full conditional distribution given all other quantities. Often these conditional
distributions do not belong to standard parametric families, necessitating the use of more sophisticated sampling
techniques (see Robert!” and Gelman et al.>° for further details). However, these are implemented in the software
packages we describe in the following, such that the analyst need not generally concern themselves with the details.

4.4 Frequentist properties

Under certain regularity conditions, as the sample size tends to infinity, the choice of prior has no impact on the
posterior distribution, since the latter is then dominated by the likelihood function. Consequently, Bayes
estimators and uncertainty intervals enjoy the same large sample properties as maximum likelihood methods:
the Bayes posterior mean estimator is consistent, asymptotically normal, and efficient.”’. In reality of course,
all samples are finite, and the choice of prior can sometimes have a material affect on inferences.
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Importantly, however, in small samples or sparse data situations, Bayesian methods can have better frequentist
properties than ML procedures, particularly if sensible priors are adopted.?!

4.5 Software

The explosion of Bayesian data analyses being performed over the last few decades is largely thanks to both the
MCMC methods developed and their implementation in accessible software. Chief among these is the WinBUGS
software package, developed in the 1990s.% It allows the user to define, using a simple language syntax or
graphical interface, the model and priors. MCMC methods are then automatically chosen by the package,
depending on the specified model and priors. One can then run the MCMC sampler, and after a sufficient
number of burn-in iterations, draws can be saved as draws from the respective posterior distributions. More
recently, new packages have been developed, with developments in various directions. These include the
OpenBUGS project (www.openbugs.net) and Stan (mc-stan.org). In the simulations described later, we make
use of the Just Another Gibbs Sampler (JAGS) program,>® whose model language is very similar to the BUGS
language used by WinBUGS, and which can be easily called from R.

5 Maximum likelihood and multiple imputation
5.1 Maximum likelihood

ML estimation and inference is based on the likelihood function, but unlike the Bayesian approach, does not
involve specification of prior distributions for parameters. ML methods enjoy many favourable frequentist
properties — assuming correct model specification the ML estimator is consistent, asymptotically normal, and
efficient. In the specific context of adjustment for covariate measurement error, a drawback of ML is that the
likelihood function typically involves intractable integrals,' such that numerical methods such as numerical
integration are required in order to obtain estimates. The same obstacle is overcome in the Bayesian approach
through the use of MCMC methods. A further drawback of ML in the present context is that in small samples
inference based on symmetric Wald based confidence intervals may perform poorly due to the lack of regularity of
the likelihood function. Software to fit user defined models which allow for covariate measurement error is also
somewhat limited. Lastly, the absence of prior distributions prevents the incorporation of external information
which may sometimes be available regarding the measurement process.

5.2 Multiple imputation

MI has become an extremely popular approach for handling missing data and has also been advocated as an
approach for handling measurement error, in which X; is multiply imputed.>* ?” There is a very close connection
between MI and ‘direct’ Bayesian inference. In its originally devised form, MI is based on repeatedly drawing
imputations of missing values from their posterior distribution based on a Bayesian imputation model. The
analysis model of interest is then fitted, typically using ML, to each of the complete datasets. The resulting
estimates and standard errors are then pooled using rules developed by Rubin.”® MI can most directly be
viewed as an approximation to a full Bayesian analysis,” although its frequentist properties can of course also
be evaluated.*® From the Bayesian perspective, application of MI and Rubin’s rules can be viewed as a particular
route to performing a Bayesian analysis, in which one effectively assumes that the posterior distributions for the
parameters are normally distributed.

As described by Carpenter and Kenward® in the context of missing data, there are a number of settings
where use of MI may be preferable to a direct Bayesian analysis. However, in the context of covariate
measurement error we argue that the advantages of a direct Bayesian approach far outweigh the
disadvantages, relative to MI. First, when only replicate error-prone measurements are available, standard
software for performing MI cannot be applied, since X; is missing for all individuals. Second, standard
parametric imputation models which might be used to impute X; in general may not be compatible with the
assumed outcome model.>! This will in particular occur when the outcome model is itself non-linear, or the
imprecisely measured covariate is assumed to have a non-linear effect on the outcome. Third, when allowance is
made for covariate measurement error, as noted earlier, the posterior distributions for the outcome model
parameters are typically skewed in small to moderate sample sizes, such that symmetric credible/confidence
intervals constructed using Rubin’s rules may perform poorly, either from a subjective Bayesian perspective or
in a frequentist evaluation. Lastly, we note that software for performing Bayesian inference will typically also
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permit saving of the imputed values of X; as a by-product, such that if the analyst really wants imputed datasets
they can still be obtained.

6 Simulations

In this section, we present simulation results for the cases of a linear, logistic, and Cox proportional hazards
outcome model, comparing the popular RC approach with the Bayesian approach. We adopt the standard
frequentist type simulation setup, in which datasets are repeatedly generated using fixed population parameter
values.

6.1 Linear regression

We first present simulation results for a simple linear regression outcome model. Datasets of size n = 1000 were
simulated, with covariates X; and Z; drawn from a bivariate normal distribution with means 0, variances 1, and
covariance 0.25. Continuous outcomes Y; were generated from the linear regression model given in equation (1),
with By =0 and By = Bz = 1. The normally distributed residual variance o> was chosen in order to given
R?>=0.1,0.5,0.9. Each individual had an error-prone measurement W; = X;+ U;, with U; ~ N(O, a%,).
A random subset of 10% of individuals had a second error-prone measurement, with the same error variance
o7. This variance was chosen such that the unconditional reliability p = 0%/(0% + 07,) took values 0.5,0.7,0.9,
corresponding to low, moderate, and high reliability.

We first estimated the outcome model parameters using RC, by fitting a random-intercepts model for the error-
prone measurements, with Z; entering as a fixed effect, as described in Section 3. Next, we fitted a Bayesian model,
calling JAGS from R using the rjags package. We adopted non-informative priors for all model parameters,
following those proposed by Gustafson.'® Specifically, we assumed independent normal priors for
Bo, Bx» Bz, Vo, ¥z, with mean 0 and variance 10,000, and inverse gamma /G(0.5,0.5) priors for each of the
variance parameters. As discussed by Gustafson, the latter prior can be thought of as being equivalent to a
best guess for the variance of one, coming from a single observation. We ran five parallel chains with 1000
burn-in iterations and 5000 main iterations. If the Rubin—Gelman convergence statistic Rhat was greater than
1.05 for any of By, Bx, Bz, we extended the chains until this was met.

Table 1 shows the simulation results, with 1000 simulations per scenario. For Bayes, convergence to stationarity
(as defined previously) was achieved in all simulations, although additional iterations were sometimes required to
achieve this, particularly when reliability was 0.5. RC had slight upward bias for By when the reliability of the
error-prone measurements was 0.5, and was unbiased for the higher reliability values. The Bayes mean estimator
was upwardly biased for reliability equal to 0.5 and R?> = 0.1 and R?> = 0.5. Inspection of the estimates showed that
the sampling distribution of the Bayes mean estimator had greater skew than the RC estimator, with the larger
estimated values inducing the upward bias. For reliability of 0.5 and 0.7, and R> = 0.9, the Bayes estimators had
lower empirical standard deviation (SD) than the RC estimator and consequently had lower mean squared error in
these scenarios. For the other scenarios, the RC and Bayes estimators performed similarly. Lastly, the 95%
Bayesian credible intervals had frequentist coverage close to 95%.

Table I. Linear regression results.

Reliability R? RC mean (SD) Bayes mean (SD) Bayes Cl
0.5 0.1 1.03 (0.28) 1.17 (0.39) 0.94
0.5 0.5 1.03 (0.19) 1.15 (0.27) 0.92
0.5 0.9 1.03 (0.17) 0.98 (0.07) 0.98
0.7 0.1 1.01 (0.20) 1.05 (0.22) 0.95
0.7 0.5 1.01 (0.09) 1.04 (0.10) 0.94
0.7 0.9 1.00 (0.07) 1.01 (0.05) 0.97
0.9 0.1 1.00 (0.16) 1.02 (0.16) 0.95
0.9 0.5 1.00 (0.06) 1.01 (0.06) 0.94
0.9 0.9 1.00 (0.03) 1.01 (0.03) 0.94

1000 simulations per scenario. Empirical means and SDs for estimates of fx, and coverage of 95% Bayesian credible
intervals. RC: regression calibration; SD: standard deviation.
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We emphasize that the performance of the Bayesian estimator depends on the choice of priors. In particular, the
use of more informative priors for the measurement error variance and the variance for X|Z could be used to
reduce the bias and variability of the Bayesian estimators. To investigate this, we performed a further set of
simulations, performing the Bayesian analysis with three different sets of priors. The first (Bayes 1) used the same
priors as described previously. The second (Bayes 2) used the same priors except that the prior for U§(|Z was
replaced by a Beta(3, 1) prior for the conditional (on Z) reliability pz = af(l 2/ (af(‘ 7+ a%,). This prior corresponds
to assuming that the (conditional) reliability is unlikely to be small (= 0.015 chance of being less than 0.25), and it
can be expected to stabilize estimates of this parameter (and therefore also the outcome model parameter
estimates). The third (Bayes 3) instead used a Beta(10, 10(1 — o)/ p[,) prior for pz, where pi, denotes the true
value of the parameter for each scenario. The mean of this prior is p[;, and so this corresponds to using a prior that
is centred at the correct value of this parameter. In order to allow the different priors to have a larger influence, the
sample size was reduced to 250 subjects, and only 25 subjects had a second error-prone replicate measurement W,.

Table 2 shows the results. When the (unconditional) reliability was 0.5, RC showed some upward bias. This is
due to occasionally the estimated conditional reliability being very small, leading to a large estimate of Sy. Bayes |
performed worse than RC with this reliability, except for R> = 0.9, where Bayes 1 had little bias and was much less
variable. This can be attributed to the fact that the Bayes approach essentially imputes the unobserved X using all
other variables, and when R? is large, the outcome Y enables X to be imputed with little variability. Bayes 2 had
similar bias to RC when the reliability was 0.5 and R* was 0.1 or 0.5, but had much lower variability. As we would
expect Bayes 3 had even lower bias than Bayes 1 and Bayes 2 (as well as RC), and was less variable. Results for
reliability equal to 0.7 were qualitatively similar, again demonstrating that the use of stronger priors reduced bias
and variability. For reliability of 0.9, the three Bayes estimators performed very similarly, but had slight upward
bias (in contrast to RC, which had little bias).

6.2 Logistic regression

Next, we performed simulations with a logistic regression outcome model. The covariates X; and Z;, and error-
prone measurements were generated as described previously. The binary outcome Y; was then generated according
to a logistic regression model (2). The intercept By was chosen so that P(Y; = 1) = 0.2 approximately. We
performed simulations with log odds ratios Sy = 0.1,0.5, 2, representing small, moderate, and large effects of
X,. As before, we set B = By.

RC was implemented as described previously. For the Bayesian approach, we again used independent normal
priors for each of By, By, and B,. For B, we used, as before, the non-informative prior By ~ N(0, 10000). For By
and B, we adopted the N(0, 1.38) prior suggested by Hamra et al.>> As described by Hamra et al., the use of such a
mildly informative prior can help in terms of stabilizing estimates. This prior corresponds to assuming, a priori,
that we are 95% sure that the odds ratios exp(8y) and exp(82) lie between 0.1 and 10, an assumption that is

Table 2. Linear regression results with small sample size.

RC mean Bayes | Bayes | Bayes 2 Bayes 2 Bayes 3 Bayes 3

Reliability R? (SD) mean (SD) Cl mean (SD) Cl mean (SD) Cl

0.5 0.1 1.20 (1.33) 2.06 (1.58) 0.93 1.23 (0.73) 0.97 1.13 (0.51) 0.97
0.5 0.5 1.20 (1.36) 1.62 (0.51) 0.90 1.21 (0.38) 0.96 1.15 (0.24) 0.97
0.5 0.9 1.21 (1.40) 0.95 (0.10) 0.98 0.91 (0.10) 0.96 0.96 (0.08) 1.00
0.7 0.1 1.03 (0.41) 1.30 (0.63) 0.96 1.14 (0.46) 0.97 1.08 (0.41) 0.97
0.7 0.5 1.02 (0.20) 1.27 (0.35) 0.92 I.15 (0.26) 0.95 1.08 (0.18) 0.96
0.7 0.9 1.02 (0.17) 1.00 (0.08) 0.98 0.99 (0.08) 0.98 1.00 (0.07) 0.99
0.9 0.1 1.01 (0.33) 1.08 (0.36) 0.96 1.08 (0.35) 0.96 1.05 (0.34) 0.96
0.9 0.5 1.00 (0.12) 1.07 (0.13) 0.94 1.07 (0.13) 0.94 1.05 (0.12) 0.95
0.9 0.9 1.00 (0.05) 1.04 (0.05) 0.93 1.04 (0.05) 0.92 1.03 (0.05) 0.94

1000 simulations per scenario. Empirical means and SDs for estimates of fBx, and coverage of 95% Bayesian credible intervals. RC: regression
calibration; SD: standard deviation.

Bayes |: G(0.5,0.5) priors for of and a}qz.

Bayes 2: /G(0.5,0.5) prior for o3 and Beta(3, 1) prior for pz.

Bayes 2 1G(0.5,0.5) prior for 05 and Beta(10,10(1 — pj7)/ pjz) prior for ppz.
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Table 3. Logistic regression outcome model simulation results, with 1000 simulations per scenario.

Reliability Bx RC mean (SD) Bayes mean (SD) Bayes Cl
0.5 0.1 0.10 (0.12) 0.12 (0.14) 0.94
0.5 0.5 0.51 (0.15) 0.58 (0.19) 0.94
0.5 2 1.64 (0.31) 1.94 (0.32) 0.97
0.7 0.1 0.10 (0.10) 0.11 (0.10) 0.95
0.7 0.5 0.50 (0.11) 0.52 (0.12) 0.94
0.7 2 1.74 (0.20) 2.01 (0.27) 0.97
0.9 0.1 0.10 (0.09) 0.10 (0.09) 0.94
0.9 0.5 0.50 (0.10) 0.51 (0.10) 0.95
0.9 2 1.91 (0.17) 2.01 (0.20) 0.96

Monte-Carlo means and SDs for estimates of Sx from regression calibration (RC) and Bayes, and empirical coverage of
95% Bayesian credible intervals. SD: standard deviation.

arguably generally reasonable in most epidemiology studies (provided the predictor has been suitably
standardized). For the y parameters and the variance parameters, we assumed the same priors as in the case of
the first set of linear regression simulations.

Table 3 shows the results of the simulations. For 8y = 0.1, RC and Bayes performed very similarly, both being
essentially unbiased and having similar empirical SD. For By = 0.5 and reliability of 0.5, while RC is unbiased,
Bayes showed some upward bias and was more variable than RC. For reliability ratios of 0.7 and 0.9, the
performance was similar for both. For By =2 and reliability of 0.5, RC showed downward bias, consistent
with the known properties of RC for logistic regression, in that bias is larger for large covariate effects. In
contrast, Bayes showed only a slight downward bias. The bias of RC reduced, again as expected, as the
reliability was increased to 0.7 and then 0.9, although some downward bias remained even for the latter case.
In contrast, Bayes estimates were essentially unbiased. Lastly, the Bayesian 95% credible intervals had
approximately 95% coverage across all scenarios.

6.3 Cox proportional hazards regression

Lastly, we performed simulations for time-to-event data based on a Cox proportional hazard model. The
covariates X; and Z; were generated as described for linear regression. Event times 7; were generated according
to the Weibull hazard model h(t|X;, Z;) = ki< ePXitB2Zi We used k =2, and A was chosen so that approximately
10% of individuals had an event time before the end of follow-up which was fixed at time 10 (e.g. 10 years); the
remaining individuals were censored at time 10 (D;=0). We performed simulations with log hazard ratios
Bx =0.1,0.5,2 and as before we set B, = By.

RC was performed as described previously. For the Bayesian approach, we used independent normal priors for
By and B, and we chose the N(0, 1.38) prior as was used in the logistic regression simulations, corresponding here
to an assumption that we are 95% sure that the hazard ratios exp(B8y) and exp(8,) lie between 0.1 and 10. For the
y parameters and the variance parameters, we assumed the same priors as in the case of linear and logistic
regression. As outlined in Section 4.2, we assumed a process prior for the baseline cumulative hazard
which implies Gamma priors for the increments in the hazards; dHo(t;)) ~ Gamma(c(H*(¢(j+1)) — H*(¢(;))). ¢).
We used ¢=0.001, representing low confidence in the prior mean of the Gamma Process, Hj(f). We used
H*(t(j4+1)) — H*(1(jy) = r(t(j+1) — tjy) with r=0.01, since the data were simulated so that 10% of individuals
have the event during 10 time units of follow-up. The analysis requires the data to be specified using a
counting process format, and this is illustrated in example code given online. Due to the higher computational
burden of fitting the Cox model, only three parallel chains were used, and 100 (rather than 1000) simulations were
performed for each scenario.

Table 4 shows the simulation results. For 8y = 0.1 and 8y = 0.5, RC and Bayes performed very similarly across
all three reliability values. For 8y = 2 and reliability of 0.5, RC showed bias toward the null, in line with previous
simulation evidence.®® This bias was reduced as the reliability increased, although there was still downward bias
with reliability of 0.9. In contrast, the Bayes estimator was much less biased. The Bayesian credible intervals had
approximately 95% coverage across all nine scenarios. To explore the impact of an increased proportion of
individuals failing, an additional simulation study was conducted in which 50% of individuals were observed to
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Table 4. Cox regression outcome model simulation results, with 100 simulations per scenario.

Reliability Bx RC mean (SD) Bayes mean (SD) Bayes Cl
0.5 0.1 0.10 (0.09) 0.10 (0.09) 0.98
0.5 0.5 0.49 (0.11) 0.48 (0.11) 0.94
0.5 2 1.49 (0.15) 1.92 (0.20) 0.92
0.7 0.1 0.1'1 (0.09) 0.11 (0.09) 0.98
0.7 0.5 0.49 (0.11) 0.48 (0.11) 0.93
0.7 2 1.67 (0.16) 1.98 (0.18) 0.97
0.9 0.1 0.1'1 (0.10) 0.11 (0.10) 0.96
0.9 0.5 0.51 (0.10) 0.50 (0.10) 0.96
0.9 2 1.84 (0.15) 1.96 (0.15) 0.95

Monte-Carlo means and SDs for estimates of Sx from regression calibration (RC) and Bayes, and empirical coverage of
95% Bayesian credible intervals. SD: standard deviation.

fail (and with a smaller sample size of n =100, each of whom had two error-prone replicates). The results (not
shown) were qualitatively very similar to those in Table 4.

7 lllustrative example

To illustrate the potential flexibility and advantages of the Bayesian approach, we consider data from the
NHANES III. NHANES III was a survey conducted in the US between 1988 and 1994 in 33,994 individuals
aged two months and older. We consider a model relating known risk factors for cardiovascular disease (CVD)
measured at the original survey to subsequent hazard of CVD. Mortality status at the end of 2011 is available
through linkage to the US National Death Index, with cause of death classified using the ICD-10 system.

Here, we consider illustrative analyses of the data available on those aged 60 years and above at the time of the
original survey. Fitting Cox models to large datasets is very slow using JAGS, particularly for large datasets. We
therefore considered inference for a Weibull regression model for hazard for death due to CVD, with age, sex,
smoking status, diabetes status, and systolic blood pressure (SBP) at the time of the survey as covariates

h(t) = rt"~" exp(By + Bisbp; + Basex; + Biage; + Bysmoker; + Bsdiabetes;)

where r is a shape parameter, B, ..., B85 are log hazard ratios, and ¢ is time since the original survey for each
individual. We take the first SBP measurement taken at the original survey, sbp;, to be an error-prone
measurement of each individual’s underlying SBP, subject to classical error. An approximate 5% subset of
individuals was (non-randomly) selected to participate in a second examination, during which SBP was again
measured. This second exam took place on average 17.5 days after the first exam. We assume this second
measurement of SBP, sbp,,, to be an independent error-prone measurement of each individual’s underlying SBP.

After deleting seven individuals who were missing diabetes status, data were available on 6519 individuals. Of
these, by the end of 2011 1469 (22.5%) had died due to CVD, 3641 had died from other causes, and 1409 were still
alive. In the Weibull model for hazard for CVD, we treat deaths from causes other than CVD as censorings; 5033
(77.2%) had an SBP measurement available from the first examination. An SBP measurement at the second
examination was available in 401 (6.2%) of individuals. Unfortunately, smoking status was only recorded in
3433 (52.3%) of individuals. The analysis thus required handling of both the measurement error in the SBP
measurements and the substantial missingness in the smoking and SBP variables.

7.1 Naive analyses

We first fitted the Weibull regression using sbp,; (ignoring measurement error) to the 2667 complete cases, whose
estimates are shown in the first column of Table 5. Strong evidence was found for independent associations
between each of the covariates and hazard of death due to CVD, with associations in the expected directions.
To check that a Weibull assumption was appropriate, we additionally fitted a Cox proportional hazards model
with the same covariates. The estimates of the log hazard ratios between the two models were very similar,
suggesting a Weibull assumption is reasonable here. Secondly, we performed a global test of the proportional
hazards assumption using the Schoenfeld residuals following fitting the Cox model, which gave p =0.08, indicating
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Table 5. Log hazard ratios estimates and 95% confidence/credible intervals for the NHANES IIl data.

Covariate Naive CCA Naive Bayes RC CCA Bayes adj. CCA Bayes adj. full

SBP (per 20mmHg) 0.085 (0.014, 0.157) 0.086 (0.015, 0.160) 0.115 (0.014, 0.221) 0.114 (0.017, 0.211) 0.122 (0.059, 0.186)
Male 0.49 (0.30, 0.67) 0.49 (0.32, 0.67) 0.49 (0.32, 0.68) 0.49 (0.31, 0.69) 0.46 (0.36, 0.57)
Age (per 10 years) 0.88 (0.77, 0.99) 0.87 (0.76, 0.99) 0.87 (0.76, 0.99) 0.87 (0.75, 0.98) 1.01 (0.94, 1.09)
Smoker 0.26 (0.07, 0.46) 0.25 (0.06, 0.45) 0.26 (0.07, 0.45) 0.26 (0.06, 0.46) 0.24 (0.07, 0.41)
Diabetes 0.50 (0.29, 0.72) 0.50 (0.28, 0.72) 0.50 (0.28, 0.72) 0.50 (0.27, 0.71) 0.68 (0.55, 0.81)

CCA: complete case analysis performed using 2667 individuals, full analysis performed using 6519 individuals; RC: regression calibration; naive: ignoring
measurement error; adj.: adjusting for measurement error in SBP; SBP: systolic blood pressure.

no evidence to reject an assumption of proportional hazards. Through fitting a logistic regression model for the
missingness indicator of the smoking variable, we found evidence that smoking was more likely to be missing for
females, older individuals, diabetics, and those individuals with longer follow-up times. The latter finding suggests
that the complete case analysis (CCA) may be biased.

Next, we fitted the same Weibull model to the complete cases, again ignoring measurement error, using the
Bayesian approach. We assumed an exponential prior for the shape parameter r with parameter 0.001. Rather than
placing a prior on the log hazard ratios, we placed independent N(0, 10°) priors on —py/r, since this leads to
improved MCMC mixing.** Five independent chains were used, with 5000 burn-in iterations and 5000 main
sample iterations. The estimates are 95% credible intervals are shown in Table 5. In line with theory, due to
the large sample size, the Bayesian estimates and intervals were almost identical to those from ML.

7.2 Regression calibration

We then applied RC to the complete cases. To do this, we fitted a linear mixed model to the available SBP
measurements, with a random effect for individual and fixed effects of sex, age, smoking, and diabetes. We also
included a fixed effect to allow for a systematic shift in mean between the first and second exams. The resulting
predicted true SBP values at exam one were then used as a covariate to fit the Weibull regression model. We used
2000 non-parametric bootstrap samples to obtain percentile 95% confidence intervals for the estimates, in order to
take into account the two stage estimation process. Based on the mixed model fit to the complete cases, the
estimated reliability (conditional on the error-free covariates) was 0.75. Adjusting for measurement error using
RC led to the estimated log hazard ratio for SBP increasing, from 0.085 to 0.115, as expected by approximately 4/3
(1 divided by the reliability 0.75). Estimates for the other covariates did not materially change.

In order to apply RC to the full dataset, we contemplated use of its use in combination with MI. This is
problematic, however. First, one could use MI to impute the missing smoking, sbp,; and sbp, values. For
example, one could apply the full conditional specification MI approach, imputing the smoking variable using
logistic regression and the SBP variables using linear regression models. In these models, one must include the
error-free covariates, plus the outcome. In the case of a time to event outcome modelled using a proportional
hazards model, an approximately compatible imputation model for covariates includes the event indicator and an
estimate of the cumulative hazard function.’® Having generated the imputed datasets, RC could then be applied to
each imputed datasets. However, in order to apply Rubin’s rules, one requires valid within imputation estimates.
As described in Section 3, for RC these can only be obtained by bootstrapping or by programming large sample
theory estimating equation variance estimators. While both could in principle be programmed, they are not
entirely straightforward to implement, and so we do not pursue MI in combination with RC.

7.3 Bayesian analyses adjusting for covariate measurement error

Next, we modified the Bayesian CCA to accommodate measurement error. We assumed that each individual’s true
underlying SBP around the time at which the first measurement was obtained, sbp;, was normally distributed
conditional on smoking, sex, age, and diabetes, with N(0,10%) priors on the regression coefficients and a
Ga(0.5,0.5) prior on the precision parameter. For the first SBP measurement, sbp,;, we assumed

sbp;; = sbp; + Ua



1706 Statistical Methods in Medical Research 27(6)

with U;; ~ N(O, oz,). For the second SBP measurement, sbp;,, we assumed

sbpp = v +sbp; + Un

where v is a parameter to allow for a systematic shift in mean between the two exams, and U, ~ N(0, a%]). The
errors U;; and Uj are assumed to be independent. For oz,z a Ga(0.5,0.5) prior was assumed, and for v a N(0, 10%)
prior was assumed. The posterior mean and credible intervals are shown in Table 5, under ‘Bayes adj. CCA’. The
results were very similar to those based on RC CCA, except that the credible interval for SBP was slightly
narrower.

A strength of the Bayesian approach is its flexibility to simultaneously handle missing data and measurement
error. To accommodate missingness in the smoking and SBP variables under a missing at random assumption, we
assumed a model for the distribution of smoking, conditional on the fully observed error-free covariates sex, age,
and diabetes. In our analysis, we assumed a logistic model for this conditional distribution

logit{ P(smoker; = 1)} = a + o sex; + azage; + azdiabetes;

with independent mean zero normal priors for the regression coefficients, each with variance 10,000. A major
advantage of the Bayesian approach here is that the missing smoking and underlying SBP values are imputed by
the Gibbs sampler, using the conditional distributions implied by a single well-specified joint model for the data.
The posterior means were somewhat different to the RC and Bayes complete case analyses, and as expected the
credible intervals were narrower, due to the inclusion of observed data from 3852 individuals. The changes in
coefficient estimates may be indicative of bias in the complete case analyses.

8 Discussion

In this paper, we have empirically compared the frequentist properties of RC and Bayesian approaches to handling
covariate measurement error. Our simulations demonstrate that for what might be considered a fairly typical
epidemiological study setup, the methods often perform very similarly. As such, we believe that the Bayesian
approach for measurement error adjustment may be as useful for the frequentist as for the Bayesian statistician.
When the reliability of error-prone measurements was low, the Bayes estimator performed somewhat worse than
RC. However, for larger effect sizes, RC was biased for logistic and Cox regression, while the Bayes estimator
showed much less bias. A critical point to bear in mind is that there are infinitely many Bayes estimators,
corresponding to the different choices of prior distributions — use of different priors could lead to, depending
on the true data generating mechanism, better or worse performance. While some analysts dislike the Bayesian
approach because of the requirement to specify priors, they give the analyst the opportunity to exploit external
information about model parameters, potentially leading to more precise estimates.

We have highlighted the fact that Bayesian estimators enjoy the same large sample frequentist properties as the
method of ML, and also described the relationships between these approaches and the popular MI approach.
Software for MI cannot be directly applied to handle covariate measurement error when replication data are
available. Moreover, even when validation data are available, the covariate imputation models included in MI
implementations may not be compatible with the analyst’s outcome model.*! A further strength of the Bayesian
approach is that uncertainty intervals automatically allow for the skewness typically found in covariate
measurement error adjusted estimators.

As has been noted by many authors before, a key strength of the Bayesian approach is its flexibility to handle
more complicated models and data structures. As we have demonstrated in Section 7, the Bayesian approach can
readily accommodate both covariate measurement error and missing data. Moreover, more complex measurement
error models can in principle be used, for example, to allow for heteroscedastic error, systematically biased
measurements, or more flexible modelling of the true covariate’s distribution.! The flexibility of the Bayesian
approach also lends itself to the problem of adjusting for covariate measurement error when the true covariate is
assumed to have a complex non-linear association with the outcome.*® In this paper, we have focused on the
setting whereby internal replication data are available; the Bayesian approach readily handles the situation where
validation data are instead available.

Nonetheless, the Bayesian approach has a number of drawbacks. As a fully parametric approach, a natural
concern is sensitivity of inferences to distributional assumptions, particularly those about the unobserved true
covariate and measurement errors. In this regard, the Bayesian approach can utilize more flexible model
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specifications, for example, by modelling the unobserved true covariate using a normal mixture model.>” An
important practical issue is that although the software available for fitting complex analyst defined models
using the Bayesian approach has seen dramatic developments over the last 25 years,*” fitting certain models
(e.g. Cox proportional hazards models) can still take tremendously long. Although this concern will be
progressively mitigated by increasing computational power, it is arguably still a material drawback. Further
research and effort are therefore warranted to develop software implementations of the Bayesian approach
which mitigate this.
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