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What is Measurement Error (and why do we
care)?

e Measurement error arises when we have error in the
predictors, leading to biased inferences

¢ In a controlled experiment, measurement error is often not a
significant factor, but because epidemiology is observational
the investigator often has to use an error-laden measurement
of the exposure to a toxin instead of the true exposure

® In a typical linear regression, we have the model Y = X3 +¢,
but if the measurement contains error we only have access to
W (the erroneous measurement of X) and naively plugging in
W for X can obscure the true relationship between X and Y
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Categorical Bias Toward the Null

® To better demonstrate how this works, imagine that X is
binary, and represents exposure a toxin, and Y is a negative
health outcome where higher is worse, and X is measured
with 20 % error

Truth:

Non-Exposed Group Mean = 0. Exposed Group Mean =0.8

et 118 9% %
Phafyghtid O f

et 18 3% k3%
%%ﬁ% gehek ¢ e
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Models of measurement error

Typically, we deal with the situation in which the exposure is
continuous (not binary), and we assume one of two kinds of error

e Classical Errors: The errors are assumed to be distributed
around the true X's, that is E[W|X] = X.

e Berkson Errors: The true X's are assumed to be distributed
around the error's, E[X|W] = W. For example: let's say a
machine delivers true doses of a drug "X" distributed around
the dial setting of the machine that dictates how much of the
drug the machine is supposed to deliver "W". We can only
observe W, not the true X, and X is distributed around W

Throughout the rest of this talk we use the classical error model,
as assumed by the Bartlett-Keogh paper, and as used in the
paper's simulations to be discussed later in the talk.
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Continuous Bias Towards the Null

Measurement Error in continuous covariates also biases the
relationship between X and Y towards the Null; shown here are
500 observations from the following simulation:

Y =1+3X+ N(0,2), WX~ N(X,1),X ~ N(0,1)

True x and measured w against y

Response (y)
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Continuous Bias Towards the Null

Aside: In the special case illustrated above, X ~ N(ux, o%),
WX ~ N(MW,UW) the expectation
+2
E[XIW =w] = %—CW+(1 —c)uwherec= "%, Wh|Iethe
2,752 okt
same linear reIatlonsh|p between X and Y still holds in th|s
special case, the shape of the relationship between X and Y can be

affected by the measurement error.
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Overview

e The regression calibration approach is one of the simplest
ways to address measurement error. Assuming the classical
error model E[W|X] = X, we simply replace W with an
estimate of E[W|X]. But how can we estimateE[W|X] without
X?

e Usually, a substudy is done so that for a small proportion of
the population we have a measurement with error and a
measurement without error.

® That s, for a subpopulation of our study we have the true X,
often through a "Gold Standard” measure of the covariate of
interest that is too expensive to apply for the entire study.
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Regression Calibration

® One easy and generalizable method to estimate E[W|X] is to
simply, for the substudy where x is known, regress x on w, fit
amodel X = E[X|W = w] = ayw (assuming W, Y are
centered), and then plug all the error-laden measurements W
into the model, and use the results to fit the model
Y=0+08X+e

e This method generalizes nicely, for example in a polynomial
model one could simply replace x by E[X|W = w], replace x?
by E[X2|W = w], etcetera. The results of this approach on the
previous example, with a substudy of size 50:
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Regression Calibration with “Gold Standard”

True x, measured w, gold standard calibrated w, against y
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Repeated Measures

® When it is not possible to measure a "Gold Standard” an
alternative approach is to, for a substudy, repeat the error
prone measurement of X, so that for some subpopulation of
the study we have one or several more measurements from
which to estimate the effect of the error. This is what was
done in the Bartlett -Keogh simulations.

® The simplest version of RC for repeated measures is simply
repeating the same method as before but replacing the "Gold
standard” X's with the error laden repeated measurements
(second repetitions).

¢ |n other words, for replicated individuals i, we regress W, on
W1, the results of this type of calibration on the simulation
with 100 of the 500 measures having a second repetition:
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Repeated Measures

True x, measured w, repeated measure calibrated w, against y
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Efficient Repeated Measures

¢ When some additional assumptions are made, such as that
Xi|Zi ~ N(vo + 712, af(lz), and the measurement errors are
normally distributed, etc. more efficient versions of
Regression Calibration can be used.

e So far we have only talked about the linear model in which RC
gives consistent parameter estimates. Regression calibration
approaches in the logistic and cox models are also
approximately consistent under certain assumptions.
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Regression Calibration for Logistic and Cox

In order to have consistency for RC in logistic, we assume:
e The outcome is rare OR 3% Var(X;|W;) is small
e X;|W; is normal
o Var(X;|W;) is 'small’
In order to have consistency for RC in cox regression, we assume;
® The event rate is low OR measurement error variance is small
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Model Specification

For the simulations the paper conducts, with Wj; as the
measurements with error, W, as the repeated measurements
with error in the replication substudy, and Z; as the covariates, a
bayesian model is specified to determine the relationship
between Y and X via posterior inference on

The posterior inferences of this model are then compared to the
results of the regression calibration approach for making
inferences about j for Linear, Logistic, and Cox regression, with
differing levels of measurement error and different levels of
correlation between X and Y



Measurement Error Regression Calibration Bayesian Correction Simulation Comparison Example R & Conclusion
00000 0000000 [e] lele]e} 00000 00000 00000

Joint Model

e First, a joint model is specified for (Y}, X;, Wi, Wiz|Z), by
conditioning on Z there is no need to model its distribution

® The joint model can be decomposed as
F(YilXi, Zi, B, ) E(Wi| X, 0 5)F(Xi| Zi, )

e U is the measurement error, the first component is the
outcome model, the second component is the measurement
model, and Wj are assumed to follow a classical error model,
the final component specifies a model for the unobserved
covariate X; conditional on Z; with a default choice of the
normal linear regression model

® y denotes additional parameters, for example the baseline
hazard function in cox regression
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Prior Specification

In a bayesian approach, some prior distribution must be specified
for the model parameters, in this analysis commonly used
"reference priors” which have minimal impact on inferences are
assumed:

e 3 and v have diffuse normal priors centered at 0

e Gamma(0.5, 0.5) is used as the prior for the precision
(reciprocal of variance) parameters

® For the Cox model, the baseline hazard process is assumed to
be independent of the other priors and utilizes a Gamma
process prior Hy(t) = GP(cHo*, c), where Hp * (t) is a prior
guess at the mean and c is confidence in that guess, with
small c corresponding to a diffuse prior
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Posterior Simulation

Posteriors draws are simulated with MCMC

e Under certain regularity conditions, as the sample size tends
to infinity the choice of prior has no impact on the posterior
distribution, since it is dominated by the likelihood function
As a result the bayesian posterior mean estimator is
consistent, asymptotically normal, and efficient

Model coded in JAGS with R
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Advantages of the Bayesian Approach

There are several key advantages of bayesian models for
measurement error, which include

R & Conclusion
00000

e Dealing with measurement error with a ML based approach
often involves intractable integrals, which is overcome in the

bayesian setting through MCMC

e Software to fit models which allow for measurement error is
limited, while software for MCMC sampling is very flexible and
can be used to handle measurement error by building it into

the model

e External information about the measurement process can be

incorporated easily in the bayesian setting

e Bayesian modeling can be used to handle both measurement

error and missing data
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Simulation Studies

Three types of simulations were used to compare RC to Bayesian

methods
) Linear' Bo =0,8x =Bz =1, 0% chosen st R? = 0.1,0.5,0.9,
s =05,07,08
X

e Logistic: Intercept chosen such that P(Y = 1) = 0.2, log odds
ratios Sx = 0.1,0.5,2 chosen to represent small, moderate,

and large effects of X;, % =0.5,0.7,09
X u

¢ Cox: Event times generated with a Weibull hazard model
h(t|X;, Z;) = s\t~ 1eX+82Z such that 10 % of individuals had
an event time before the end of "follow up” at time 10, log
hazard ratios 8x = 0.1,0.5,2 and B8x = 37

e Simulations run 1000 times (except for Cox, which was only
run 100 times due to computational burden)
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Models

The data generation models explicitly were:
e Linear: Y; = 0o + BxXi + BzZi + €
Logistic: logit(prob(Y; = 1)) = o + BxXi + BzZi
Cox: h(t|X;, Z) = rAte— e Xi+hzZi
[llustrated Example (later in presentation):

h(t) = rt""exp(Bo+51Sbp;+B2sex;+Bsage;+Bssmoker;+psdiabetes;)
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Simulation Results for Linear Regression

Reliability R? RC mean (SD) Bayes mean (SD) Bayes ClI
0.5 0.1 1.03 (0.28) 1.17 (0.39) 0.94
0.5 0.5 1.03 (0.19) 1.15 (0.27) 0.92
0.5 0.9 1.03 (0.17) 0.98 (0.07) 0.98
0.7 0.1 1.01 (0.20) 1.05 (0.22) 0.95
0.7 0.5 1.01 (0.09) 1.04 (0.10) 0.94
0.7 0.9 1.00 (0.07) 1.01 (0.05) 0.97
0.9 0.1 1.00 (0.16) 1.02 (0.16) 0.95
0.9 0.5 1.00 (0.06) 1.01 (0.06) 0.94
0.9 0.9 1.00 (0.03) 1.01 (0.03) 0.94
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Simulation Results for Logistic Regression

Reliability Bx RC mean (SD) Bayes mean (SD) Bayes ClI
0.5 0.1 0.10 (0.12) 0.12 (0.14) 0.94
0.5 0.5 0.51 (0.15) 0.58 (0.19) 0.94
0.5 2 1.64 (0.31) 1.94 (0.32) 0.97
0.7 0.1 0.10 (0.10) 0.11 (0.10) 0.95
0.7 0.5 0.50 (0.11) 0.52 (0.12) 0.94
0.7 2 1.74 (0.20) 2,01 (0.27) 0.97
69 0.1 0.10 (0.09) 0.10 (0.09) 0.94
0.9 0.5 0.50 (0.10) 0.51 (0.10) 0.95
0.9 2 1.91 (0.17) 2.01 (0.20) 0.96
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Simulation Results for Cox Regression

Reliability Bx RC mean (SD) Bayes mean (SD) Bayes Cl
0.5 0.1 0.10 (0.09) 0.10 (0.09) 0.98
0.5 0.5 0.49 (0.11) 048 (0.11) 0.94
0.5 2 1.49 (0.15) 1.92 (0.20) 0.92
o7 0.1 0.11 (0.0%9) 0.11 (0.09) 0.98
0.7 0.5 0.49 (0.11) 048 (0.11) 0.93
0.7 2 1.67 (0.16) 1.98 (0.18) 0.97
0.9 0.1 0.11 (0.10) 0.11 (0.10) 0.96
0.9 0.5 0.51 (0.10) 0.50 (0.10) 0.96
0.9 2 1.84 (0.15) 1.96 (0.15) 0.95
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Modeling Cardiovascular Disease with Bayesian
Cox and RC Cox

e Given that the greatest advantage of the Bayesian approach
seemed to be in Cox Regression, and to illustrate its flexibility,
the approach was applied to the NHANES Ill data, a survey
conducted in the US between ‘88 and '94 in 33,994 individuals
two months and older

¢ Death due to cardiovascular disease was modeled as the
event of interest with blood pressure (sbp, subject to
measurement error), sex, age, smoking status, and diabetes
as covariates

e To improve fitting speed, inference for a Weibull regression
model of the hazard was used when evaluating the
measurement error model, so that the hazard was modeled
as h(t) = rt"~'exp(BX), r given a diffuse prior
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Naive Analyses

¢ Fitting the Naive Weibull and Naive Cox revealed that the
Weibull assumption was reasonable since the estimates of
the log hazard ratio were close to one another with and
without the Weibull assumption

® The test of the Schoenfeld residuals gave p = 0.08, insufficient
evidence to reject the proportional hazards assumption

e Through fitting a logistic regression model for misssingness of
the smoking variable, there was evidence smoking was more
likely to be missing for females, older individuals, diabetics,
and individuals with longer follow up times, indicating the
complete case analysis may be biased by the exclusion of
missing variables
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Measurement Error Analyses

e RC was fit in two stages, a LMEM with a random effect for
individual and fixed effects for sex, age, smoking, and
diabetes, and a fixed effect for systematic shift in mean
between first and second exams, used to model the true SBP
at exam one, which was then used as a covariate in the
weibull regression, where Cls were obtained via bootstrap

® The Bayesian analysis was fit with diffuse normal priors on
regression coefficeints and Ga(0.5, 0.5) on the precisions, with
sbp assumed to follow classical error, sbp; = sbp; + Uj,j € 1,2
where 1 and 2 are the repeated measures, Uy ~ N(0,02)

® To accommodate missingness under MAR, a model was
assumed for the distribution of smoking:
logitP(smoker; = 1) = ag + a1Sex; + apage; + asdiabetes;, with
independent diffuse normal priors for all regression
coefficients
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Missingness

® The inclusion of the partially missing observations (which
added 3,852 individuals to the 2,667 complete ones) improves
efficiency and reduces the size of the credible intervals

® The authors considered using Ml in conjunction with RC, but
implementation was not straightforward because valid within
imputation estimates are required, necessitating the use of
bootstrap or estimating equation variance estimators
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Results

Table 5. Log hazard ratios estimates and 95% confidence/credible intervals for the NHANES IIl data.

Covariate Naive CCA Naive Bayes RC CCA Bayes adj. CCA Bayes adj. full

SBP (per 20mmHg) 0.085 (0.014, 0.157) 0.086 (0.015, 0.160) 0.115 (0.014,0.221) 0.114 (0.017,0.211) 0.122 (0.059, 0.186)
Male 0.49 (0.30, 0.67) 049 (0.32, 0.67) 0.49 (0.32, 0.68) 049 (0.31, 0.69) 0.46 (0.36, 0.57)
Age (per 10 years) 0.88 (0.77, 0.99) 0.87 (0.76, 0.99) 0.87 (0.76, 0.99) 0.87 (0.75, 0.98) 1.01 (0.94, 1.09)
Smoker 0.26 (0.07, 0.46) 0.25 (0.06, 0.45) 0.26 (0.07, 0.45) 0.26 (0.06, 0.46) 0.24 (0.07, 0.41)
Diabetes 0.50 (0.29, 0.72) 0.50 (0.28, 0.72) 0.50 (0.28, 0.72) 0.50 (0.27,0.71) 0.68 (0.55, 0.81)

CCA: complete case analysis performed using 2667 individuals, full analysis performed using 6519 individuals; RC: regression calibration; naive: ignoring
measurement error; adj.: adjusting for measurement error in SBP; SBP: systolic blood pressure.
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Other interesting findings

® For those interested, two RMD's of my own code and a link to
the github repository of the analysis performed by Bartlett
and Keogh on the NHANES data have been sent out to the
class, which we can cover if there is time

¢ The first creates the graphs shown earlier in the presentation

® The second is a simplistic simulation that demonstrates a
simple bayesian and a simple RC correction for measurement
error
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Conclusion

Bayesian corrections for measurement error exhibit comparable
performance to RC in simulations and may be useful for
frequentist as well bayesian statisticians, given that they exhibit
good frequentist large sample properties. Bayesian is well suited
for measurement error due to the ease of dealing with both
measurement error and missingness simultaneously. In addition,
the uncertainty intervals automatically allow for skewness
typically found in covariate measurement error adjusted
estimators. However, as a fully parametric approach, violations of
the distributional assumptions can cause problems, and
addressing such problems with more complex models can cause
model fits to take tremendously long (eg Cox model). Further
research is warranted to develop software that can better
implement the bayesian approach.
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Thanks for your attention!
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