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What is a Dynamic Treatment Regime?

¢ In many contexts, the effect of a drug depends both on
a patient’s covariates (e.g. blood pressure, age, disease
stage, etcetera) and the history of previous drugs used
in treatment to treat the patient

e A Dynamic Treatment Regime is a sequence of decisions
that dictate how a person should be treated given a set
of that person’s covariates and the history of the
person'’s treatment

e Treatment can be thought of in terms of "rounds” in
which the first drug the person is treated with for the
condition is the first round, and after some amount of
time a decision is made by the physician to either keep
the patient on the same treatment or switch to another
treatment (often there is only one other treatment), this
is the second "round”
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Notation

e The rounds are notated k € 1,2, ..., K, k is an arbitrary
round in the set of rounds, and corresponds to the
physician’s decision points

e The possible actions (i.e. treatments to give the patient)
at a given decision point k is notated Ay, where a, € Ay
is the action that is taken at decision point k, and the
allowed actions at decision point k given state
action-history Sy, ax_1 is notated W(S, ax_1)

e The previous actions taken before decision point k, the
action history (or treatment history), are notated
ax—1 = (a1,..., ak-1)

® 5, represents the "state” (i.e. the covariates) at decision
point k, and Y(ak) is the final outcome of interest after
all actions have been taken, and 5y is the state history
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Definition of a Dynamic Treatment Regime

¢ The potential values of the covariates for patientw € Q
(the set of patients) under a hypothetical set of actions
ax in the set of all possible sets of actions A is written
Ww* = {85(31), S;(ég), ceey S;k((éK,ﬂ, Y*(éK) W éK S AK}

¢ A dynamic treatment regime is a set of rules (i.e.
functions)

d = (di(s1), d2(s2, a1), d5(Ss, 82), ---dk (S, @—1)) that
determine how a patient should be treated given any
possible current covariates and past treatment history

e The set of all possible state action-history pairs at
decision point k is defined as 'y = {5k, ax_1 €
Sk x Ag_q stV e {1,...,k}wehave (j #1) a1 €
V(5. 8-2) and P((3-1) = §) > 0}
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Potential Outcomes of a regime d

e The set D of W-specific dynamic treatment regimes is
the set of all d such that for all k € {1,2,...,K} the rule
dx is a mapping from ', the set of all possible state
action-history pairs at decision point k to A, the set of
actions at k such that di(Sk, ax_1) € V«(Sk, ak—1)

¢ The potential outcomes associated with d are defined
as {S5(d1), ..., Sp(dk_1), ..., Si(dk—1), Y*(d))}, and for all
w € Q with S;(w) = s1 we notate

d1(S1) = U
S2(di)(w) = Sz(ur)(w) = s2

dk (8, Uk—1) = Uk
Y*(d)(w) = Y (Uk)(w) =y
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Defining an Optimal Regime

e The Optimal Regime is the one that, for a patient
entering with covariates sy, maximizes the expected
value of their potential outcome Y*(d), thus we define
d°Pt € D as the regime such that

E[Y*(d)|S1 = s1] < E[Y*(dopt)|81 = 81| Vd € Dand Vs; € Sy

e Because for each patient we can only observe one
potential outcome, our goal is to estimate d°P* using the
data actually observed from a sample of patients from
Q for which baseline evolving covariate information and
treatment history received is available
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Observational vs SMART data

e Data used for estimating a dynamic treatment regime
are typically observational or from a Sequential Multiple
Assignment Randomized Trial

* In the observational setting, no intervention is
necessary, treatment assignment is determined by
routine clinical practice

e Many suitable records of treatments from routine
practice are randomly selected and their results are
combined for use in training a model to determine d°pt

e Because the data are observational it is necessary for
some learning methods to adjust for the propensity of
treatment
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SMART

e A SMART is a trial design in which patients are randomly
started on one treatment, and then at one or several
fixed decision points re-randomized, generating data
that can be used to train the model d°Pt without having
to worry about mis-specifying the propensity of
treatment

¢ In a SMART the randomization probabilities at point k
may still depend on sk, ax_¢ to improve the expected
health outcomes for the patients in the trial
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patient_id round shp previous_treatment  current_treatment ~ outcome
246 1 159  NA A 0
246 2 159 A B 0
247 1 143 NA A 1
247 2 133 A B 1
248 1 133 | NA A 1
248 2 129 A A 1
249 1 139 NA A 1
249 2 129 A A 1
250 1 148 NA A 1
250 2 142 A B 1
251 1 141 NA B 1
251 2 146 B A 1
252 1 140 NA B 0
252 2 141 B B 0
253 1 141 NA B 1
253 2 144 B A 1
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Assumptions

e Regardless of whether we are using observational or
SMART data, certain assumptions must be made for the
models used to estimate d°Pt

e We assume the outcomes and covariates observed are
the potential outcomes and covariates under the
treatments actually administered

e We must also make the Stable Unit Treatment Value
Assumption (the patient’s covariates and outcomes are
unaffected by how other patients are treated)

e Assume that there are no unmeasured confounders
(this is satisfied by design in the SMART)

¢ |n this talk, all assumptions are assumed to hold, but
the unmeasured confounder assumption in the
observational setting can sometimes be addressed with
Instrumental Variables
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Estimating the Optimal Regime

e Itis only possible to estimate d°? from the available
data if we actually have data for all treatment options in
W (Sk, Sk_1), thus the class of ¥ regimes we can
consider is limited by the data available

e Two approaches to estimating d°P! in the framework
previously specified are Q- and A- Learning, which both
involve backwards induction, relying on the fact that the
optimal regime can be defined recursively

e First, note that: d}g)c’pt (3k, ak_1) =
arg Maxay cw (¢.ax_1) E [ Y*(@k—1, @) | Si(@k—1) = 5]
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Backwards Induction

° d,(<1)0pt (§K7 '_aK—1) _ )
arg maxa,cwy (sx,a_1) E [ Y*(8k -1, ak) | Si(ak—1) = 3«]
e Thus, the optimal regime at decision K is the one that

maximizes the expected value of the outcome (given
the covariates and treatment history)

e We write that max expected value under that optimal
decision at K as Vfg) (Sk,ak_1) = )
MaXa, ey (5.ac_1) B |V (8k—1, a) | Si(ak—1) = 3]

e We then recurse V}((” to define the optimal decision at
K—1: d}(g_)c;pt (Sk_1,8K_2) = arg MaXa, eWy,

B [Vi (@2 ak-1) | Si_(@k-2) = Sk

8Kk—1,8Kk—2)
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Backwards Induction

e We then use the optimal decision at point K — 1 to
define the value at K — 1 as

1 _ -
° Vl((—)1 (Sk—1,8k-2) = MaXay_ €Wk _1(Sk—1,8K—2)
1), = o (= =
E [V;(< )(@Kk—2, ak_1) | Sik_1(@k_2) = 3K—1}
e This procedure is then continued backwards until the
first treatment is done

¢ |n other words, you are always selecting the treatment
that maximizes the expected value of the outcome
assuming that you choose the optimal treatments in the
future
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Simple Example

Flip Fair Coin:

If heads $10
E[Green] = $5 / Otherwise $0

E[Gray] = $2

Argmax_Green,Gray(E[Y]) = Green
Max_Green,Gray(E[Y]) = $5

Roulette wheel:
E[Black] =V If 38, win $38
Otherwise $0

E[Red] = $4

Guaranteed $2

Argmax_Black,Red(E[Y]) = Red
Max_Black.Red(E[Y]) = $4

Guaranteed $4

R & Conclusion
0000000
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Simple Example

V_2(a1=0 =5
LA = Orengs) = Flip Fair Coin:

If heads $10
E[Green] = $5 / Otherwise $0

E[Gray] = $2

Argmax_Green,Gray(E[Y]) = Green
Max_Green,Gray(E[Y]) = $5

Roulette wheel:
E[Black] =V If 38, win $38
Otherwise $0

E[Red] = $4

Guaranteed $2

Argmax_Black,Red(E[Y]) = Red
Max_Black.Red(E[Y]) = $4
V_2(a1=Purple) =$4

Guaranteed $4

R & Conclusion
0000000



Dynamic Treatment Regimes The Optimal Regime Q- Learning Class  A- Learning Class  Trade-Offs
0000 0000000000008000 000 00000 000000
V_2(a1=0i =$5
2@ range) =§ Flip Fair Coin:
If heads $10

E[Green] = $5 / i

Argmax_Purple,Orange(E[V_2(a1)]) = Orange
Max_Purple,Orange(E[V_2(a1)]) = $5

E[Gray] = $2

Argmax_Green,Gray(E[Y]) = Green
Max_Green.Gray(E[Y]) = $5

Guaranteed $2

R & Conclusion
0000000

Roulette wheel:
E[Black] =V If 38, win $38
Otherwise $0

E[Red] = $4

Argmax_Black,Red(E[Y]) = Red
Max_Black,Red(E[Y]) = $4
V_2(a1=Purple) =$4

Guaranteed $4
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Quality Function

e The quality of each possible treatment at the final
decision point K given action-history and covariates is
defined as Q (k. ax) = E[Y|Sk = 3k, Ak = ax]

¢ Note that the Q is a function of a, NOT a,_1, because it
gives the quality of a current action given past actions
and current covariates, so it is also a function of a
current action

e The quality of previous treatments is again defined
recursively: B B
Qx(3k, @) = E [Vi41(Sk: Sk41, @) | Sk = 3k, Ak = a]

e Qs the quality of a treatment, given future treatments
are decided optimally, at point k, while V is the value of
the patient’s state action-history at decision point k + 1
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V_2(a1=0i =$5
2@ range) =§ Flip Fair Coin:
If heads $10

Q(Orange) = $5 Q(Grean)=$5
E[Green] = $5 / i

Argmax_Purple,Orange(E[V_2(a1)]) = Orange
Max_Purple,Orange(E[V_2(a1)]) = $5 Q(Gray) = $2

E[Gray] = $2

Argmax_Green,Gray(E[Y]) = Green
Max_Green.Gray(E[Y]) = $5

Guaranteed $2

R & Conclusion
0000000

Roulette wheel:

E[Black] =V If 38, win $38
Otherwise $0

Q(Black) = $1
E[Red] = $4

Argmax_Black Red(E[Y]) = Red
Max_Black,Red(E[Y]) = $4 QRed) =$4
V_2(a1=Purple) =$4

Q(Purple) = $4
Guaranteed $4
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So... how do we estimate the optimal regime?

e The regime is estimated by either estimating the Q
functions at each decision point k, functions that give
the qualities of the treatments at each point, starting
closest to the end and then moving backwards, OR

¢ |n the binary setting (2 treatments) the regime can be
estimated by estimating the contrast function at each
decision point k, which is estimating the difference
between the two Q functions without explicitly modeling
each Q- function, using that function and another
function (the h function, which gives the part of the
effect on the outcome that is not different for the two
treatments) to estimate V and then moving backwards

e The first method above is Q-learning, the second is
A-learning
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Q-Learning

¢ In Q-Learning, estimation of d°P' is accomplished by
directly modeling the Q functions and fitting them

e One may posit Q(Sk, ax; &) fork = K, K —1,...,1 for the
Q-functions, with & as a finite dimensional parameter

e The models may be linear or nonlinear in &, can include
main effects, interactions, etcetera

® The estimating equations are solved at K, the Vi ; is
estimated for each patient /, the values are projected
backwards, and the estimating equations for K — 1 are
solved using \A/K,,- in place of Y, and so on
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Estimating with WLS

e |f a weighted least squares model is used for Qy at
every decision point, the estimating equation is:

0Q«(S LA - "
Z K gfk ik Sk)zk (Skis Ari) <A Vi 1),i— Qu(Si i A &)} = 0
p

e Once a model (such as the above) is fitted, at each
decision point k we now can model the quality of each
treatment for each possible state action-history at that
decision point, taking the action that maximizes the
quality at a given state action-history gives an estimate
of the optimal treatment at point k, and taking this for
all k € {1,2, ..., K} gives an estimated optimal treatment
regime d3'



Dynamic Treatment Regimes  The Optimal Regime Q- Learning Class  A- Learning Class Trade-Offs R & Conclusion
0000 0000000000000000 008 00000 000000 0000000

Hypothetical Model

e Suppose there are two treatment rounds and two
treatments, a simple model for the Q-functions would
be:

© Qi(s1,a1;¢1) = H 1 + a1 (H] ¢1)

® (32, &) = H] B2 + a(H, ¢2)

e Where H; = (1,s])7 and H. = (1,s], a1, 8])

e |t should be noted that even when the data is from a
SMART, the estimated regime may be inconsistent

unless all of the models for the Q-functions are correctly
specified.
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The Contrast

e Advantage Learning (A- Learning) takes advantage of
the fact that the optimal treatment only requires
knowing the difference between
Qk(5k, ak_1,ax = 1) — Qk(Sk, ax_1,ax = 0), or the
advantage of choosing treatment 1 over treatment 0

® C(Sk,ak—1) = Qu(Sk, ak—1,ak = 1) — Qu(8k, -1, a = 0)
is known as the contrast function

¢ The Quality function Q(5k, @) can be written as the sum
of the contrast function and another function h(5x, ax_1)
that is not a function of the current treatment
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A- Learning

e First, posit models for the Contrast functions
C(5k,ak—1:vk),k =1,..., K, depending on parameters 1)
e Robins (2004) showed that all consistent and

asymptotically normal estimators for the ,'s can be be
represented in the following general form:

i Ak (§kiaz(k—1)i? @/)k) {Aki — Tk (gkiaz(k—ﬂi; ¢k)}
i=1

< { Vikr1)i—Awi Ci (gkiyz(k—ﬂi; wk) —0k(Ski Atk—1)is Bk)} = 0
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Double Robustness

o If Var(Y|A_1), Sk) is constant, we have:

. Ak(?k@(kq)) = @%,l(Q(éli’ ak—1;Yk), and
Ok(Ski, Ack—1)i) = h(Sk, A1)

e Parametric models are typically adopted for these
functions

e |f the data is not from a SMART, the propensities of
treatment mx (S, @_1) must also be modeled

* A- Learning has the double-robustness property, if
either hy(Sk, Ak—1)) or mk(Sk, @—1) is correctly specified
the estimator for ¢y is consistent, provided that
C(5k, ax_1) is correctly specified
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Estimating Equations

¢ The estimating equations for the A- Learning Model
under these assumptions is:

Z C (Sk, Ak_1; V) {Ak/_ﬂ'k (SknA(k 1)ir qbk)}

< { Vikg1)i— Ak Ci <§ki,Z(k—1)i; 1/1k) —hi(Skis Aik—1yii B)} = 0

n_Ohg gk,z(k—ﬂ;ﬁk - 5. A
( 35, ){V(k_H)’._Ak,-Ck(Sk,',A(k_1)i;¢k)_

i=1

hi(Ski» Atk—1yii Bk)} = 0
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Backwards Iteration

® As before, these estimating equations are solved
through backwards iteration, that is, solve jointly for
(YK, Bk, dk) (the parameters of the contrast, state
action-history, and propensity functions), then use
these parameters to get Q of each treatment for each
person, and project the larger back as V

e |f the contrast is positive, treatment 1 is optimal,
otherwise treatment O is optimal

e How well our model estimates d°P* depends on how
close the specification of C is to the truth, as well as the
correct specification of either hor 7

¢ There exist other kinds of A- Learning (e.g. regret based
A- Learning) that work slightly differently and will not be
discussed in this talk
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Efficiency vs Robustness

¢ Q- Learning is more efficient than A-learning when
models are correctly specified, but Q- Learning can be
more sensitive to model misspecification

e From simulations this trade-off can be clearly seen,
although Q- and A- learning often end up with similar
results

¢ In this presentation we will show one such simulation,
although others are contained in the paper
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Simulation; One Decision Point

The simulation we will cover from the paper is the simplest
one: only a single decision point, no backwards induction,
and the 'regime’ only consists of a single treatment. To avoid
having to do extra typesetting, | just have an image from the
paper:



Dynamic Treatment Regimes The Optimal Regime Q- Learning Class  A- Learning Class Trade-Offs R & Conclusion
0000 O000000000000000 000 00000 00000 0000000

In this and the next section, n = 200. Here, the observed data are (S1;,A1;,Y), i = 1,..., n. With expit(x) = /(1

+ ¢¥), we used the class of generative models

S1~Normal(0,1), A; |S1 = s1~Bernoulli{expit(¢ly + ¢%y51 + ¢%557)}, Y] S1 = s1, @34
Ay = a1~Normal{ 8}, + 8051 + Blys} + a1(4y + ¢151), 9},
indexed by ¢° = (6%, 61, 6%) ", 8° = (8%, 8%, B%) ", 0° = (5, 9)", s0 that d°P* = df*", d{ (s1)
= I(¢9 + 9181 > 0). For A-learning, we assumed models hy(s1; B1) = Bro + B11s1, C1(s2;%1) = 1o + $rasy,
and 71y (s1;¢1) = expit(po + $1151), and for Q-learning we used Q;(s1, ay;§1) = hy(s1;81) + @1C1(s1;P1). These
models involve correctly specified contrast functions and are nested within the true models, with hq(sq; B1), and
hence the Q-function, correctly specified when 3% = 0. The propensity model 7, (s1; ¢ is correctly specified
when ¢}, = 0. To study the effects of misspecification, we varied 37,and¢?, while keeping the others fixed,
considering parameter settings of the form ¢° = (0, —2, ¢?2)T, 8% = (1,1, ﬂ?z)T, P = (1, O.S)T.
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Results under Correct Model

¢ When the models were both correctly specified,
Q-learning was (measured by MSE ratio) 6% more
efficient in estimating ¢9, and 174% more efficient in
estimating ¢?,

e However, the correct decision was still chosen by A-
Learning 95% of the time, compared to 97 % for Q-
Learning
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Results under Incorrect Q Model

R & Conclusion
0000000

e Suppose that 89, is misspecified, but that the propensity
model is correctly specified

e This will result in Q- Learning having bias, but A-
Learning not having bias due to its double robustness,

resulting in the bias-variance trade-off shown in the

panels below:
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1.0-1.0 -05 0.0 0.5
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Results under Incorrect Q Model and Propensity
Model

e Suppose that 89, is misspecified, but that the propensity
model for A- Learning is also misspecified, and that they
are both misspecified to similar degrees

e In the below visual, 59, and ¢%, were moved together so
that the t-tests of significance in their respective linear
and logistic regressions were the same

3.0 A A 100
V1o V11

90

85

Ratio of MSEs (A/Q)
% of Ideal Response

00+ __ N . 9 oy | a N T 80
-1.0 -05 0.0 05 10-1.0 -05 0.0 05 1.0-1.0 -05 0.0 05 1.0
95 (corr. to equivalent pJ,) 49, (corr. to equivalent BY,) 3, (cor. to equivalent BS,)
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My Own Experimentation

e Out of curiosity, | decided to try and create a simulation
of my own in R and implement the methods from the
paper, with a "realistic”-ish but simplistic SMART

¢ In my simulation there is only 1 covariate, SBP, and two
rounds of treatment at which a patient can receive
either A or B, and based on their SBP after the round 2
treatment (which could be thought of as the 'round 3’
SBP) the patient has Y = 0 with probability
Tep(7 0Tssp) and Y = 1 otherwise, which
corresponds to about 0.5 survival probability with final
sbp of 155, 0.75 survival probability for final sbp 145,
and 0.25 survival probability for final sbp 165
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Drug Effects

e Drug A reduces SBP by about 5 whenever it is applied if
the person has somewhat high blood pressure, drug B
does nothing in the first round, but decreases blood
pressure by 15 in the second round if the previous
treatment was also B, provided the person has a very
high blood pressure

¢ | designed the simulation to see if the methods could
correctly decide in round 1 to assign B when the person
enters with high blood pressure and A if the person
enters with not-so-high blood pressure, and then in
round 2 to only give B if the person received B
previously

e This simulation data is what | showed earlier in the
presentation
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Model One

e Two models were used, although they may give
equivalent results, one model is better used for
understanding how Q- Learning works, and the other is
better used for the way A- Learning works

¢ The first model takes at each time point a separate
regression for the two different current treatments:

Im(outcome ~ sbp + prev A + prev A:sbp, data = round 2 A)
Im(outcome ~ sbp + prev A + prev A:sbp, data = round 2 B)

e Then for all patients in round 2, use each regression to
predict Y (which is binary, meaning this is the linear
probability model), and whichever is higher,
round 2$V=pmax(predict(Q reg A, round 2),predict(Q reg B, rous
is backwards inducted into round 1,
round 1 <- left join(round 1, round 2, by = “patient id”)
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Model One

e Repeat thisin round 1, regressing on the backwards
inducted V:

Im(V ~ sbp, data =round 1 A)
Im(V ~ sbp, data = round 1 B)

Which ever current treatment model has the higher
expected V under these models is the optimal treatment
decision at decision point 1, and the models from the

previous slide give the optimal treatment decision at
decision point 2
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Model Two

e Create one model at each decision point, the model at
decision point 2 can is then broken up into an hand a
Contrast function, when the contrast is positive A is
optimal, when the contrast is negative B is optimal

e For each patient, again use the better treatment to get
V, iterate backwards, repeat

e Details are in the code

¢ Note that in each of these formulations neither the
contrast nor the full Q functions are specified fully
correctly
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Conclusion

e Both methods give the same results, and all results
seem reasonable, you can check them out yourself in
the code that I've provided

¢ In sum, both Q- and A- Learning provide good
approaches to learning an Optimal Dynamic treatment
regime, although both depend on certain relatively
strong assumptions that may not be valid or verifiable
in the real world

e Methods for learning the Optimal Dynamic Treatment
Regime is an interesting open problem in statistics and
causal inference



Thanks for your attention!
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